Scaling of e+e- Ring Collider

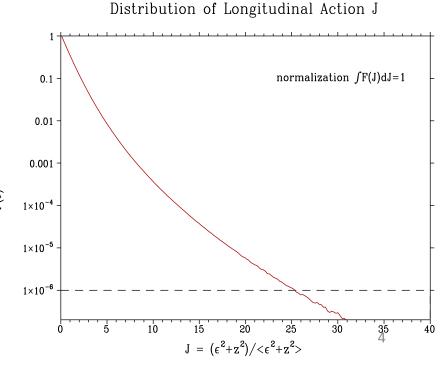
K. Yokoya 2012.11.15 HF2012, FNAL

e⁺e⁻ Ring Colliders

- Lots of proposals since LEP3 proposal a year ago
- Except for the local issues
 - Can be accommodated in existing tunnel? (LHC)
 - If new tunnel, does it fit with future plans of the lab? (LHeC, HELHC, VLHC, etc)
- Problems are common to all the proposals
- The only parameters are
 - Ring size
 - site power limitation

Common Features of e⁺e⁻ Ring Colliders

- High luminosity ~10³⁴ cm⁻²s⁻¹ causes short beam life time due to radiative Bharbha scattering
 - > Top-up injection needed
 - > one more ring
- Bunch collision frequency (5-50kHz) much lower than in B factories (10-100MHz)
 - because synch.rad.power must be reduced
 - → reduce total current , keeping luminosity
 - increase bunch charge & decrease # of bunches
 - hence, LC-like collision frequency and bunch charge
 beamstrahlung similar to LC


HF2012 K.Yokoya

Limitation of e⁺e⁻ Ring Colliders

 Beamstrahlung at high-energy tail causes significant energy loss of electrons/positron


$$egin{align*} oldsymbol{ \gamma_{max}} &pprox rac{2Nr_e^2 \gamma}{lpha \sigma_z \sigma_x}, & (\sigma_x \gg \sigma_y) \ & rac{dW}{d\omega} \propto \exp\left[-rac{2\omega}{3 \gamma E_e}
ight], & (\gamma E_e \ll \omega \ll E_e) \ & ext{ Pictuibution of Longitudinal Action I.} \end{aligned}$$

- Particles with large energy loss cannot circulate around the ring (momentum band-width)
- Affects the beam life time
- Hence, ring colliders are much more fragile than LCs against beamstrahlung
 - Once accelerator is OK, then beamstrahlung in ring colliders is milder than in LC for physics

Nanobeam Scheme (or Crab Waist)

• large crossing angle >> σ_x/σ_z (no crab cavity compensation)

- merits
 - effectively short bunch without σ_z
 using high RF voltage
 - this makes smaller beta possible
- But does not help in solving the beamstrahlung issue

HF2012 K.Yokova

Luminosity Scaling of e⁺e⁻ Ring Colliders

V. Telnov, arXiv:1203.6563v, 29 March 2012

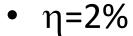
For given Upsilon, the momentum band width must be

$$\eta \equiv [\Delta p/p]_{max} \gtrsim 15\Upsilon$$

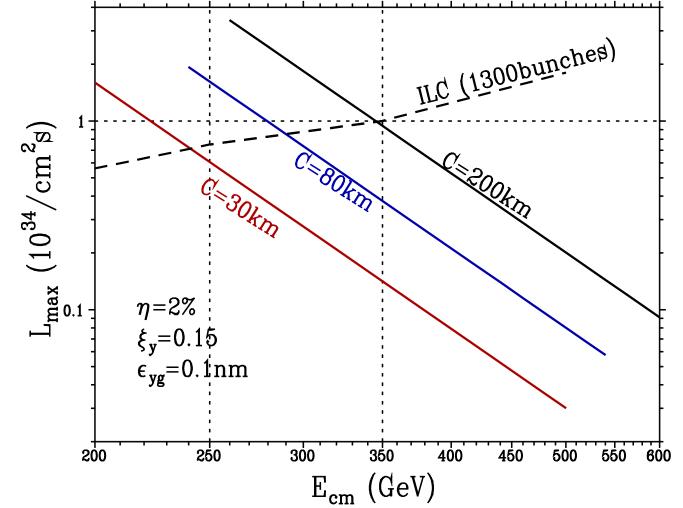
 Then, the luminosity at beamstrahlung limit and tuneshift limit is given by

$$\mathcal{L} \propto \frac{\rho P_{SR}}{E^{13/3}} \left(\frac{\xi_y \eta^2}{\varepsilon_{g,y}}\right)^{1/3}$$

 P_{SR} : syn.rad.power


 ρ : bending radius

 ξ_y : tune-shift


 $\varepsilon_{g,y}$: geometric emit.

Luminosity vs. Energy

- $\xi_y = 0.15$ $\epsilon_{gy} = 0.1$ nm

R&D Items of Ring Colliders (1)

- Momentum band-width
 - RF bucket height must be $> \eta$ (OK with a higher V_{RF})
 - Transverse acceptance of off-momentum particles is an issue
 - Arc is OK (light sources accept > 4%)
 - FFS is not easy
 - chromaticity $L^*\eta/\beta_v^*$ large
 - 2% is perhaps feasible (non-educated guess)
- But what is "momentum band width"?
 - Usually, track particles with given amplitude (constant energy or constant synchrotron oscillation amplitude) over several damping times.
 - Synchrotron tune very high
 - Damping is very fast
 - It does not make much sense to track particles with constant energy or constant synchrotron/betatron amplitude
 - Possible tracking to guarantee beamlife
 - track 10-100 particles over desired life (10^7 turns)
 - including
 - exact lattice
 - synchrotron oscillation
 - synchrotron radiation in the arc
 - beam-beam kick by Erskine-Basetti
 - Beamstrahlung by Erskine-Basetti
 - And see how many particles survive

R&D Items of Ring Colliders (2)

- Vertical emittance
 - light sources can reach $\epsilon_{\rm gv}$ ~ 1pm at low energy
 - still far above the fundamental limit due to radiation opening angle $(1/\gamma)$
 - but what about colliders at high energy?
- Synchrotron radiation power O(100MW)
 - 4x LEP2
 - critical energy > MeV
 - How large is the AC power?
 - RF coupler
 - Vacuum
 - cryogenics
- IR region design
 - very small beta
 - different beam energy for e+ and e- due to beamstrahlung O(0.1%)

HF2012 K.Yokoya

(personal) Conclusions

- ILC/CLIC Higgs factory are obvious if 500GeV is feasible
 - cost and staging issues
 - CLIC has maturity problem for early start
- e⁺e⁻ Ring Colliders
 - Technology not trivial
 - Good exercise of accelerator physics (till an LC starts)
 - LEP3 (27km, 240GeV) & TLEP (80km, 350GeV) are just at the border of feasibility
 - Can be a choice if higher energy with e⁺e⁻ is not needed at all
- γ-γ Colliders
 - technology immature
 - good target as a second stage of linear colliders
- Those who are not satisfied with personal conclusions, go to FNAL →

HF2012 K.Yokoya